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Abstract The main component of senile plaques found in
AD brain is amyloid β-peptide (Aβ), and the neurotoxicity
and aggregation of Aβ are associated with the formation of
β-sheet structure. Experimentally, beta sheet breaker (BSB)
peptide fragment Leu-Pro-Phe-Phe-Asp (LPFFD) can com-
bine with Aβ, which can inhibit the aggregation of Aβ. In
order to explore why LPFFD can inhibit the formation of
β-sheet conformation of Aβ at atomic level, first, molec-
ular docking is performed to obtain the binding sites of
LPFFD on the Aβ(1–42) (LPFFD/Aβ(1–42)), which is
taken as the initial conformation for MD simulations. Then,
MD simulations on LPFFD/Aβ(1–42) in water are carried
out. The results demonstrate that LPFFD can inhibit the
conformational transition from α-helix to β-sheet structure
for the C-terminus of Aβ(1–42), which may be attributed to
the hydrophobicity decreasing of C-terminus residues of
Aβ(1–42) and formation probability decreasing of the salt
bridge Asp23-Lys28 in the presence of LPFFD.
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Introduction

Alzheimer’s disease (AD) is characterized by conforma-
tional changes and aggregation of amyloid β-peptide (Aβ)
in brains. Aβ is a proteolytic product of larger amyloid
precursor protein (APP) and consists of 39–43 residues [1].

The deposits of Aβ with the form of amyloid fibrils are
widespread in senile plaques and in cerebral and meningeal
blood vessels [2, 3]. Although many other forms of Aβ,
such as Aβ(1–40), are also present in cerebrovascular
amyloid deposits, the 42-amino acid form of Aβ (Aβ(1–
42)) is found to be the predominant species of Aβ in both
diffuse and senile plaques within the AD brain [4–6].
Accumulating evidence shows that Aβ(1–42) undergoes
spontaneous rearrangement of its initial secondary struc-
ture, generating oligomeric and polymeric species with
higher content of β-sheet structure, and such structural
transition can be inhibited by many factors [7–12].

The secondary structure determines several importance
properties of Aβ that may be relevant to the pathogenesis
of AD. Firstly, the neurotoxicity of amyloid peptide is
associated with formation of β-sheet structure [13–19] or
amyloid fibrils [20]. Secondly, the ability of Aβ to form
amyloid fibrils is directly related to the content of β-sheet
structure adopted by the peptides [21], and it has been
proposed that peptides with high content of β-sheet
structure can act as seeds for nucleation and fibrils
formation [22, 23]. Finally, Aβ with high content of β-
sheet is more resistant to proteolytic degradation of amyloid
deposits and associated with the disease process [24].
Therefore, one can reduce the neurotoxicity and inhibit
the aggregation of Aβ by preventing the formation of β-
sheet structure in Aβ.

Some non-peptide inhibitors and peptide inhibitors are
designed to prevent the formation of β-sheet structure and
amyloid aggregation [25–33]. These are so-called beta
sheet breakers (BSBs) and considered to be potential AD
drugs. Most non-peptide inhibitors are organic compounds,
which are found to inhibit or reduce the aggregation and
toxicity of Aβ in vitro. These compounds include nicotine
[25, 26], hexadecyl-N-methylpip- eridinium bromide [27],
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anthracycline 4′-iodo-4′-deoxydoxorubicin [28], amphiphil-
ic surfactants [29], and so on. However, peptide inhibitors
are more attractive to inhibit the aggregation of Aβ because
they are peptide fragments derived from Aβ and can
recognize other Aβs during aggregation. Tjernberg et al.
[30] first discovered that the small peptide Lys-Leu-Val-
Phe-Phe (KLVFF) is able to combine with full-length Aβ
and prevent its assembly into fibrils. By modification of
this pentapeptide, Soto et al. [31] designed a similar peptide
with an aromatic core: Leu-Pro-Phe-Phe-Asp (LPFFD),
which can act as BSB. In the presence of this molecule, the
amyloid fibrils can be disassembled [32]. One of their
strategies is to substitute key residues in order to reduce the
β-sheet propensity, which is very important for designing
AD drugs. Some research groups have followed this
strategy to design different kinds of peptide inhibitors and
studied their effect on the Aβ aggregation [33]. However, it
remains unclear why they can inhibit the formation of β-
sheet conformation of Aβ at atomic level.

The first attempt to elucidate the binding site of BSB
peptides on the Aβ molecule is made with the aid
molecular docking by Hetenyi et al. [34]. They selected
four BSB peptides and employed molecular docking to find
out their binding sites on the Aβ(6–34) and their
intermolecular interaction energies. However, there are
few reports about the mechanism of these BSB peptides
inhibiting the formation of β-sheet structure in the C-
terminus of Aβ(1–42). In current work, we identify the
binding sites of LPFFD on the full length Aβ(1–42) via
molecular docking and explore how LPFFD inhibit the β-
sheet formation of C-terminus of Aβ(1–42) in water using
MD simulation techniques, which is helpful for designing
new AD drugs.

Computational methods

The structure of Aβ(1–42) used in the docking calculations
is obtained from the Protein Data Bank (1IYT) [35]. The
structure of β-sheet breaker (BSB) peptide LPFFD is
shown in Fig. 1. For ligand, random starting position,
orientation, and torsion are used in order to search flexible
conformations of the compounds during the docking
process. Program Autodock 4 [36] is applied to carry out
the automated molecular docking with Lamarckian genetic
algorithm. The grid map with 80×80×80 points spaced
equally at 0.375 Å is generated using AutoGrid program to
evaluate the binding energies between the ligand and
receptor. Docking parameters are set to default values
except for the number of GA runs (200) and the energy
evaluations (25000000). At the end of the run, all docked
conformations are clustered using a tolerance of 2 Å for

Fig. 1 The chemical structure of LPFFD

Fig. 2 The structures of three
complexes (Aβ(1–42)/LPFFD)
obtained from docking calcula-
tions. The number of conforma-
tions in each cluster and their
average docking energies are as
follows: a: 66, -25.2 kJ mol-1; b:
59, -17.7 kJ mol-1; c: 48, -
14.9 kJ mol-1
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root mean square deviation (RMSD) and ranked based on
docking energies.

We select the complex A (see Fig. 2) as the initial
structure of LPFFD/Aβ(1–42) in MD simulations. MD
simulations are performed applying GROMACS 3.3.3 MD
package [37, 38] with the GROMOS96 43A1 force field
[39]. The united atom topology file for LPFFD is generated
using the PRODRG server [40]. The complex is placed in a
cubic simulation box of dimensions 73.186 Å×73.186 Å×
73.186 Å, and the minimal distance from the complex to
the edge of box is 1.0 nm. Then, the system is solvated with
water molecules, neutralized with counterions, and the
single point charge (SPC) model for water is used in the
simulations. All bond lengths are constrained using
the LINCS algorithm with a time steps of 2 fs [41]. The
system is first minimized using steepest descent algorithms
for 2000 steps to avoid unreasonable contacts. Then, we
perform 30 ns MD simulations for the system with the NPT
ensemble. The pressure is coupled to 1 bar with an
anisotropic coupling time of 1.0 ps and the temperature is
kept at 300 K during the simulations with a coupling time
of 0.1 ps. Both pressure and temperature are controlled
using Berendsen coupling protocols [42]. The long-range
electrostatic interactions are calculated by the particle-mesh
ewald (PME) method [43, 44]. Two cut-offs of 0.8 and
1.4 nm are used for the evaluation of the non-bonded
interactions.

Analysis of the MD simulations is made using the
various GROMACS tools. The secondary structure of
Aβ(1–42) in the complex is characterized by DSSP [45].
The 3D figures are plotted using the software of VMD [46].

Results and discussion

Our previous work [47] demonstrates that most residues in
the C-terminus of Aβ(1–42) adopt β-sheet structure in
water, and the formation of β-sheet structure may promote
the aggregation of Aβ(1–42). As mentioned above, some
small molecules combined with the C-terminus of Aβ(1–
42) would inhibit the conformation transition from initial α-
helix to β-sheet. In order to explore the reason why LPFFD
can inhibit conformation transition of C-terminus of Aβ(1–
42) in water, we carry out the docking calculations and MD
simulations on Aβ(1–42)/LPFFD.

According to the docking energies and cluster tolerance,
the docked conformations are divided into three main

Fig. 3 Associate of LPFFD and the C-terminus of Aβ(1–42) obtained
from docking calculations. There are four hydrogen bonds (dashed
line) between LPFFD and residues of Aβ(1–42) under the condition
of vacuum

Fig. 5 The electrostatic energy (red), Van der Waals energy (blue) and
total interaction energy (black) between LPFFD and Aβ(1–42) with
time evolution

Fig. 4 RMSDs of LPFFD (green), Aβ(1–42) (blue), and the complex
(red) compared to their original conformations as a function of time
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clusters and the complex structures of the three clusters are
shown in Fig. 2. The number of conformations in each
cluster and their average docking energies are as follows:
complex A: 66, -25.2 kJ mol-1; complex B: 59, -17.7 kJ
mol-1; complex C: 48, -14.9 kJ mol-1. It is not difficult to
see from Fig. 2 that LPFFD locates at the C-terminal of

Aβ(1–42) for complex A, and the detailed docking
information of the complex A is shown in Fig. 3. There
are four hydrogen bonds between LPFFD and residues of
the C-terminus of Aβ(1–42) in vacuum, which may be
favorable to stabilizing the initial α-helix structure in the C-
terminus of Aβ(1–42). Therefore, we select this complex A

Fig. 6 The snapshots of the
simulations at every 5 ns
interval

Fig. 7 The structure of complex
(left) and detailed binding mode
of the complex (right) after
30 ns MD simulations
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as the starting conformation of MD simulations and
investigate the effect of LPFFD on the conformation of
Aβ(1–42) in the water.

In order to examine the stability of the complex in the
water during MD simulations, the root mean square
distances (RMSDs) are calculated and shown in Fig. 4.
Clearly, it can been seen from Fig. 4 although Aβ(1–42)
exhibits conformational change, the RMSDs of LPFFD,
Aβ(1–42), and Aβ(1–42)/LPFFD stay constant after 16 ns.
The total interaction energies between LPFFD and Aβ(1–
42) are plotted against the simulation time as shown in
Fig. 5. It is not difficult to see from Fig. 5 that the total
interaction energies significantly drop near 5 ns and 15 ns
and stay constant after 16 ns, which is in agreement with
the RMSD results. It suggests that the complex obtained
from MD simulations is relatively stable.

In docking calculations under vacuum condition, we
obtain the relatively better complex structure (complex A)
with LPFFD locating around the C-terminus of Aβ(1–42)
as shown in Fig. 2. During MD simulations of complex A
in water, the presence of water will result in the
conformational change of the complex. Figure 6 represents

the snapshots of the simulations at every 5 ns intervals. It
should be noted from Fig. 6 that the binding mode between
LPFFD and Aβ(1–42) continually changes before 15ns and
approximately keeps constant after 15 ns, which is
consistent with the results from Fig. 5. The final structure
of the complex after 30 ns MD simulations is shown in
Fig. 7. Comparing with the initial complex structure (Fig. 6
(a)), the C-terminus of Aβ(1–42) in equilibrium structure of
the complex exhibits bent upward, and the small molecule
LPFFD moves to the middle region of Aβ(1–42) (Fig. 6
(g)). As is shown in Fig. 7, there are two hydrogen bonds
between Aβ(1–42) and LPFFD. The time dependence of
distances for these two hydrogen bonds are shown in Fig. 8.
It can be seen from Fig. 8 that there are two hydrogen
bonds with averaged 0.25 nm between LPFFD and Aβ(1–
42), which play an important role in the stability of the
complex (LPFFD /Aβ(1–42)).

The time dependence of secondary structure for
Aβ(1–42) in the complex is shown in Fig. 9. The
content of α-helix structure gradually decreases in the N-

Fig. 8 The hydrogen-bond distance between Aβ(1–42) and LPFFD
with time evolution

Fig. 10 The time dependence of distance between carboxyl oxygen
and amide hydrogen for Lys28-Val32 (red) and Met35-Val40 (blue).
To enhance the visual clarify, the curve of Met35-Val40 is shifted
upward by 0.2 nm

Fig. 9 The time evolution of the secondary structure of Aβ(1–42) in presence of LPFFD
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terminus of Aβ(1–42), but the residues 10–18 adopt α-
helix structure throughout the simulations. In the C-
terminus of Aβ(1–42), the α-helix and turn structure of
residues 35–40 converts into 5-helix structure after 1 ns
and this region mainly adopts 5-helix structure, with
occasionally converting into turn structure and recovering
to 5-helix structure rapidly. The C-terminus residues 28–
32 adopt α-helix structure during the simulations. The
remaining residues in C-terminus of Aβ(1–42) adopt turn
structure, no β-sheet structure is observed. The results
indicate that the secondary structure of Aβ(1–42) with
LPFFD binding in water is significantly different from that
of Aβ(1–42) in water [47]. Experimental and calculated
results [47–51] demonstrate that the C-terminus of Aβ(1–
42) in water adopts β-sheet structure. However, for
LPFFD /Aβ(1–42) in water, most residues of the C-
terminus of Aβ(1–42) adopt helix structure, which may be
related to the presence of LPFFD.

As mentioned above, LPFFD is located in the middle
region of Aβ(1–42) after 16 ns and forms hydrogen bonds
with the middle residues, the position of LPFFD is similar
to that of LPFFD in the docking complex structure B (see
Fig. 2). In fact, we also perform MD simulations to
investigate the conformational behavior of complex struc-
ture B in water. It is surprising to note that the initial helix
structure in the C-terminus of Aβ(1–42) is changed into β-
sheet structure. It reveals that the LPFFD plays a delicate
role in the stabilizing of the C-terminal helix structure of
Aβ(1–42) for complex A in water.

To further illustrate the stability of helix structure in
the C-terminus of Aβ(1–42) for complex A in water,
we calculate the distance between carbonyl oxygen and
amide hydrogen for two pairs of residues: Lys28-Val32
and Met35-Val40. The time evolution of oxygen-
hydrogen distance for these two pairs of residues is
shown in Fig. 10. The distance between carbonyl oxygen

of Lys28 and amide hydrogen of Val32 stays around
0.25 nm during the simulations, which suggests that a
hydrogen bond forms between Lys28 and Val32 and is
favorable to stabilize α-helix conformation from Lys28 to
Val32, which is consistent with the result from the analysis
of secondary structure. Although the distance between
carbonyl oxygen of Met35 and amide hydrogen of Val40
is occasionally larger than 0.35 nm during MD simula-
tions, the distance also stays around 0.25 nm within most
simulation time.

It is widely accepted that the formation of the salt
bridge between Asp23 and Lys28 in the monomer
folding plays a vital role in the aggregation of Aβ
[52–54]. Experimental study also showed that Asp23 and
Lys28 form a salt bridge in Aβ(1–42) fibrils [55]. It is
defined that the salt bridge forms when the distance
between Cγ of Asp23 and the Nζ of Lys28 is less than
0.5 nm. We record structure every 1 ps in the simulations
and obtain 3×104 structures. For Aβ(1–42) and Aβ(1–
42)/LPFFD in water, 41% and 10% of the structures form
the Asp23-Lys28 salt bridge structures, respectively.
Moreover, the distance distributions between the Asp23
and Lys28 for the Aβ(1–42) and LPFFD /Aβ(1–42) are

Fig. 11 Distance distributions between the Asp23 and Lys28 for the
Aβ(1–42) with (solid circle) and without LPFFD binding (open circle)
in water at 300 K

Fig. 12 (a) SASA for the side-chain atoms of Aβ(1–42) with (blue)
and without (red) LPFFD binding in water; (b) Difference in SASA
values for Aβ(1–42) with and without LPFFD binding
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shown in Fig. 11. At the distance around 0.3 nm, there
exists a sharp peak for the distance distributions
between Asp23 and Lys28 in the Aβ(1–42) without
LPFFD binding, which reveals the formation of Asp23-
Lys28 salt bridge. However, there are only two small
peaks in the case of LPFFD/Aβ(1–42), that is, Aβ(1–
42)/LPFFD has a lower formation probability of the
Asp23-Lys28 salt bridge than Aβ(1–42). As shown in
Fig. 5, the electrostatic interaction between Aβ(1–42) and
LPFFD has a significant contribution to the total energy of
the complex. The competition between intermolecular
electrostatic interaction and the intrapeptide electrostatic
interaction leads to the disruption of Asp23-Lys28 salt
bridge. On the other hand, the formation of hydrogen
bonds between LPFFD and Aβ(1–42) may not be
favorable to the formation of the Asp23-Lys28 salt bridge
in the monomer.

It was proposed that the helix structure correlates
with the hydrophilicity of residues and β-sheet structure
is stabilized by the hydrophobic interactions [56]. Thus,
we compute the solvent accessible surface area (SASA)
per residue to assess the extent of hydrophobic burial of
different regions in the Aβ(1–42) with and without
LPFFD binding (Fig. 12(a)). The differences in SASA
values per residue between LPFFD/Aβ(1–42) and
Aβ(1–42) are shown in Fig. 12(b). The positive and
negative values in Fig. 12(b) reflect the decreasing
and increasing in the hydrophobic character of residues,
respectively. It is not difficult to see from Fig. 12(b) that
the hydrophobicity of C-terminal residues in Aβ(1–42)
decreases in presence of LPFFD, which are favorable to
the stability of helix structures in the C-terminus of
Aβ(1–42). In addition, the increases of hydrophobicity
for N-terminal residues of Aβ(1–42) with LPFFD
binding lead to the loss of some α-helix structures as
shown in Fig. 9.

Conclusions

In summary, we use molecular docking and MD simulation
techniques to explore the mechanisms for LPFFD inhibiting
the conformational transition of C-terminus in Aβ(1–42)
from α-helix to β-sheet structure. Our MD simulations on
LPFFD/Aβ(1–42) reveal several important results: (i) there
are hydrogen bonds between LPFFD and Aβ(1–42), which
is one important factor for stabilizing complex (LPFFD/
Aβ(1–42)); (ii) the presence of LPFFD inhibits the
conformational transition of C-terminus in Aβ(1–42) from
α-helix to β-sheet structure, which is in agreement with the
available experimental results; (iii) the presence of LPFFD
inhibits the formation of Asp23-Lys28 salt bridge and
decreases the hydrophilicity of C-terminus residues of

Aβ(1–42), which is one of the possible mechanisms for
LPFFD preventing the conformational transition of Aβ(1–
42) from α-helix to β-sheet structure in water and
aggregation of the Aβ(1–42). Our current work will be
helpful for the design of new BSBs that will inhibit the β-
sheet of Aβ(1–42) more effectively.
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